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Abstract. This paper addresses the problem of calculating the vacancy formation energy 
in simple metals and presents results for aluminium. The calculations are based on the 
pseudopotential method, the local-density approximation for exchange and correlation, and 
periodically repeating geometry. The approach used is similar to that proposed by Car and 
Parrinello, and allows the simultaneous relaxation of the electrons and the ionic positions. 
Problems peculiar to metals in this approach are discussed and a way of overcoming them is 
presented. The calculated vacancy energy (0.56 eV) in aluminiumis in quite good agreement 
with experiment (0.66 eV). Comparisons with perturbation theory show that the calculated 
value is subject to a technical error of only -0.03 eV and that corrections due to periodic 
boundary conditions are also of this order. The contribution to the vacancy energy from 
non-linear effects is similar to the jellium estimate of Evans and Finnis. 

1. Introduction 

The last few years have seen great advances in the ability to calculate the structure and 
energy of solids from first principles (for reviews, see e.g. Heine 1984, Phariseau and 
Temmerman 1984, Cohen 1986, Srivastavaand Weaire 1987, Ihm 1988). These advances 
have been made possible by the systematic use of density-functional theory, by improve- 
ments in pseudopotential technique and by the steady increase in the power of 
computers. It has been shown that basic properties such as the lattice parameter, the 
bulk modulus and the stable crystal structure can be calculated with great precision by 
solving Schrodinger’s equation for the electroiis using well defined approximations. An 
impressive feature of the new methods is that they can be applied to a wide range of 
different materials: they have been successful for metals, semiconductors and ionic 
materials alike. The new methods are now being extended to treat problems in material 
physics such as surface reconstruction (Needels et a1 1987). grain-boundary structure 
(Payne et a1 1987) and point-defect energetics (Louie et a1 1976, Baraff and Schliiter 
1979, Baraff etal 1983, Car etal 1984, Scheffler 1987) in semiconductors. The time seems 
ripe for a re-examination of the problem of calculating point-defect energies in metals, 
and it is the purpose of this paper to describe a new approach to this problem. We have 
chosen to focus on the calculation of the vacancy formation energy in aluminium, both 
because of the technological importance of this metal and because it is a case where 
previous calculations are in serious disagreement with experiment. 
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690 M J Gillan 

There has been a large amount of previous theoretical work on defect energies in the 
simple metals (those having a free-electron-like band structure). In the early days of 
pseudopotential theory, it seemed possible that the properties of these metals might be 
well accounted for by perturbation theory (Harrison 1966, Heine 1970, Heine and 
Weaire 1970). The thought was that the electron-ion pseudopotential might be weak 
enough to cause only a small disturbance in the otherwise uniform gas of valence 
electrons. This disturbance, and the associated electronic relaxation energy, could then 
be calculated by linear response theory, using a realistic description for the dielectric 
function of the uniform electron gas. It was realised that linear response theory was 
equivalent to a representation of the total energy as a volume term plus an inter-ionic 
pair potential (Harrison 1966, Heine and Weaire 1970). It has turned out, though, 
that this method is satisfactory only in a few special cases. In polyvalent metals like 
aluminium, the vacancy energy cannot be calculated in this way, because the pseu- 
dopotential is too strong. The essential difficulties were highlighted by Evans and Finnis 
(1976), by means of simple calculations on the formation energy of a vacancy in jellium. 
They showed that for an electron density corresponding to aluminium, non-linear effects 
would be expected to raise the formation energy by about 1 eV. Given that the formation 
energy in aluminium is 0.66 eV (Triftshauser 1975, Berger er a1 1978, Fluss et a1 1978), 
the conclusion was that linear response theory is completely inadequate. Previous linear 
response calculations which had appeared to give good agreement with experiment (e.g. 
Popovic et a1 1974) were therefore untrustworthy. This conclusion was amply reinforced 
in the work of Jacucci et a1 (1981), which showed that with a carefully constructed 
pseudopotential and an accurate form for the dielectric function, linear response theory 
gave a vacancy energy in aluminium that was close to zero. Subsequently, attempts have 
been made to go to higher order in perturbation theory (e.g. So and Woo 1981), but the 
results have been inconclusive. Part of the problem here has been that one has no idea 
of the convergence properties of the perturbation series. 

It seems clear that the only way of resolving these problems is through a full ab initio 
calculation that does not depend on perturbation theory. Even now, this is a substantial 
undertaking, but we shall show in this paper that the task is well within the range of 
modern techniques. There have been two previous attempts to perform such a cal- 
culation for the vacancy in aluminium (Chakraborty et a1 1981, Chakraborty and Siege1 
1982), neither of which gave satisfactory results. This suggests that there are difficult 
technical problems in this kind of calculation. One of the main purposes of this paper is 
to explore these problems in some detail and to show how they may be overcome. 

Apart from the question of achieving electronic self-consistency, which does not 
present a serious difficulty, one of the major problems in metals comes from Fermi- 
surface effects. Another difficulty is that in a complete treatment one needs to account 
for the lattice distortion surrounding the defect. Recently, Car and Parrinello (1985) have 
described general techniques which allow the simultaneous relaxation of the electrons to 
the self-consistent ground state and the relaxation of the ions to their equilibrium 
positions. Although we shall not follow their technique in any detail, the methods we 
shall develop lean heavily on their general ideas. 

An important theme that we shall develop in this paper is that the perturbation 
approach, in spite of its inadequacies, can provide powerful support to a full self- 
consistent calculation. The idea here is that the approximations adopted in the full 
calculation must be such as to yield agreement with perturbation theory in the case of a 
weak pseudopotential. This requirement provides a very important control on the 
technical adequacy of the full calculation. At the same time, by comparing the full results 
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with perturbation theory, we can directly examine the contributions omitted by the 
latter. We shall be able to demonstrate that for the aluminium vacancy the energy 
contribution lacking in linear response theory has about the size proposed by Evans and 
Finnis (1976). 

The plan of the paper is as follows. Section 2 recalls briefly the main theoretical ideas 
concerning density-functional theory, supercell geometry, the vacancy formation energy 
and the perturbation expansion. In § 3, we describe the computational techniques used 
to calculate the total energy and to perform the energy minimisation. We then ( Q  4) 
present our numerical results for the energy of the perfect lattice, and the energy of 
formation of the ideal and relaxed vacancy. Our conclusions are outlined in § 5. Note 
that throughout this paper we work in atomic units, with energies in hartrees. 

2. Theoretical framework 

We summarise here the general theoretical ideas on which the work is based. 

2.1. The total ground-state energy 

According to density-functional theory (Hohenberg and Kohn 1964, Kohn and Sham 
1965, Levy 1982, Callaway and March 1984), the total ground-state energy E of the 
system of electrons and ionic cores can be expressed as a functional of the electronic 
density distribution p ( r ) :  

Eb1 = E K b l  + Ec[pl -t E H b l  -k + (1) 
Here, E K  is the kinetic energy of the non-interacting electron gas whose density is p ( r ) ,  
E,  is the electron-core interaction energy, EH is the Hartree energy, Ex, is the exchange- 
correlation energy and E,  is the Coulomb interaction energy of the cores. We treat 
explicitly only the valence electrons, whose interaction with the ionic cores is represented 
by a pseudopotential v (Y) .  The distribution p(r)  is then the (pseudo-)density of the 
valence electrons. The electron-core energy is 

E, = dr  V(r)p(r)  i 
where V(r) is the sum of the ionic pseudopotentials 

~ ( r )  = u(Ir - RiI) 
i 

withR, the core positions. In general, the ionic pseudopotential U is non-local, but in this 
paper we shall work with a local form. We take the usual local density approximation 
(LDA) for the exchange-correlation energy 

(4) 

where E,&) is the exchange-correlation energy per electron in a uniform electron gas 
of density p. 

The ground-state energy is the minimum value of E [ p ]  as a function of p(r) ,  with the 
total number of electrons and the ‘external’ potential V(r)  held fixed. The associated 
Euler equation is equivalent to the Euler equation for non-interacting electrons in an 
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effective single-particle potential Veii(r) given by 

Ve,,(r> = ~ ( r )  + 1 dr’ p ( r ’ ) / ~ r  - r ’ ~  + pxc(p(r)) 

where px. is the exchange-correlation chemical potential 

Because of this equivalence, one can regard E as a functional of the wavefunctions vi(‘) 
of the occupied orbitals: 

with p(r)  given by 

the sums being restricted to occupied orbitals. The Euler equation for the q l ( r )  must 
require that the orbitals be orthonormal. It has the form 

for the occupied orbitals i. The matrix of undetermined multipliers A, arising from the 
orthonormality constraint has eigenvalues E ,  which are the effective single-particle 
energies of Kohn and Sham. In a practical calculation, we have to determine the q , ( r )  
which give a self-consistent solution of equations (9, (8) and (9). 

For reasons that will become clear later. it will be convenient to work with the formal 
generalisation of this scheme to non-zero temperature (Mermin 1965, Callaway and 
March 1984). This can be done by working with a free energy functional A which depends 
on both the wavefunctions and the single-particle occupation numbers, which we denote 
by fl. We write 

A = E - T S  (10) 

(11) 

where E is the natural finite-temperature generalisation of equation (7): 

E = 2 C , f l ~ d r ~ ~ ( r ) ( - $ V 2 ) Y l ( r )  +ECIPl +E&l +E&l + E ,  

and the entropy S is given by 

s = -2kB 2 If! lnf, + (1 - f i )  In (1 - f i l l .  (12) 
1 

The density is now given by 

In principle, the sums now go over a complete set of orthonormal single-particle states. 
When we minimiseA with respect to the Yl ( r ) ,  with the constraint of orthonormality, 

the Euler equation is 

fi [-;v2 + veff(r)I Y i = C, A ,  (14) 
1 

where Veff(r)  is, as before, given by equation ( 5 ) .  On minimising with respect to thef, 
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with the total number of electrons fixed, we find 

where ,U is the chemical potential. If we define 

then equation (15) gives 

7 1  - = - k B T [ l n f i  - In - f i ) l  

which is equivalent to 

f i  = l/{exp[(v, - ,u)/kBT] + l>. (18) 
Equations (14) are satisfied when the W,(r) are eigenfunctions of the single-particle 

Hamiltonian, so that 

A,] = ~ l , f i E , .  (19) 
Then vl = E , ,  so that f i  are the Fermi occupation numbers for thermal equilibrium at 
temperature T. Clearly, as T-+ 0, the entropy goes to zero, and we recover the usual 
zero-temperature scheme. There is one point to notice though, which will be important 
later. In the T-+ 0 limit, the equations are satisfied just as well if, instead of taking the 
occupied wavefunctions to be eigenfunctions of the single-particle Hamiltonian, we 
take a unitary transformation of these eigenfunctions. But for T # 0, the qL must be 
eigenfunctions, because of the presence of t he5  in equation (14). 

When we apply this scheme, we shall of course take the temperature to be small 
compared with other relevant energies. 

2.2. Supercell geometry 

We have chosen to perform our defect calculations using supercell (periodically repeat- 
ing) geometry: rather than attempting to treat a single isolated defect in an infinite 
crystal, we treat a periodically repeating array of defects. This has the advantage of 
allowing us to use rather standard momentum-space techniques (e.g. Ihm et a1 1979) in 
calculating the total energy. To get useful results, we must of course take our repeating 
cell big enough to make the interaction between the defects negligible, and we shall pay 
particular attention to this problem. 

In supercell geometry, the ionic positions are periodically repeated, so that if there 
is an ion at position R then there are periodic images at R + t for all translation vectors 
tof the superlattice. The electron-ion potential V(r) has the symmetry of the superlattice: 

V(r + t )  = V(r). (20) 
The density p(r)  and hence the effective potential Veff(r) have the same symmetry. Then 
by Bloch's theorem the wavefunctions V i  must satisfy 

q l ( r  + t )  = e'q'tvi(r) (21) 
where q is some wavevector, which can be taken to be in the first Brillouin zone of the 
superlattice. The wavefunctions can thus be classified according to the wavevector q ,  
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and we shall write qql(r)  for the ith wavefunction at wavevector q. We shall use a plane- 
wave basis set and expand: 

qq,(r) = ( I / Q ~ / * )  C, aqrG el(G+q).r (22) 
G 

where Q is the volume of the supercell and G are the reciprocal lattice vectors of the 
superlattice. The density p(r)  in principle involves an integral of the Iyqi(r)12 over the 
Brillouin zone, but in practice this is replaced by a sum: 

where q goes over a chosen set of points in the Brillouin zone: the wq are a suitable set 
of weights (see § 3.8), andf,, is the occupation number of the ith orbital at wavevector 
q. The self-consistent solution of the single-particle equations (S), (13) and (14) then 
consists of the determination of the amplitudes aqiG for G’s up to some cut-off. 

2.3. Vacancy formation energy 

We shall focus on the energy of formation of a vacancy at constant volume; this is the 
same as the formation energy at constant pressure, provided the volume is such that the 
pressure is zero (Chang and Falicov 1971). We start from a perfect lattice consisting of 
N atoms on N lattice sites, remove one of the atoms to form the vacancy, and replace it 
on a new bulk lattice site; finally we compress the system back to its original volume. 
Denoting by E ( N ,  v ;  5 2 )  the energy of the system of N atoms and v vacancies occupying 
N + v lattice sites in volume 51, the energy of formation E, is 

Ef = E ( N ,  1; Q)  - E ( N ,  0; Q). (24) 
We are ultimately interested in the case where E ( N ,  1; Q) refers to the fully relaxed 
positions of the ions around the vacancy, but we shall also discuss the formation energy 
E! of the ‘ideal’ unrelaxed vacancy. In supercell geometry, the energies E ( N ,  1; Q )  and 
E ( N ,  0; Q)  cannot both be calculated directly, since systems of N + 1 and Nlattice sites 
cannot both satisfy periodic boundary conditions. This is not a problem, though, because 
the perfect lattice energy is just N times the energy per atom, so that Ef can be written 
as 

E, = E ( N  - 1 , 1 ; ( N  - l ) Q / N )  - [ ( N  - l ) / N ] E ( N ,  0; Q). (25) 

We can thus get what we want from calculations on two periodically repeating systems 
having the same number Nof lattice sites, one being the defective system of N - 1 atoms 
and a vacancy, the other being the perfect lattice of N atoms. 

When we analyse our numerical results, it will be helpful to separate the energies in 
equation (25) into various contributions. Consider first the energy of the perfect lattice 
of N atoms in volume Q. This can be constructed starting from the uniform electron gas 
of N Z  electrons in volume Q ( Z  is the core charge). If ~ ( p )  is the total energyper electron 
in the uniform gas of density p ,  then thc energy of this initial system is N Z & ( N Z / Q ) .  
Now plant into this the N ionic cores on their regular lattice positions, but holding the 
electron gas uniform. The contribution to the energy from this step is the Madelung 
energy of the cores E,,,(N, 0; Q), plus N times the interaction energy of each core with 
the uniform electron gas of density p ,  which we denote by eo@). Finally, we allow the 
electron gas to relax to the self-consistent ground state; we call this relaxation energy 
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EreI(N,  0; Q). Thus 

E ( N ,  0; Q) = N Z & ( N Z / Q )  + Ne, , (NZ/Q)  + E,,,(N, 0 ;  Q) + Erel(N, 0; Q).  (26) 
We can go through the same argument for the system of N - 1 atoms and one vacancy. 
The energy of the uniform electron gas for this system is ( N  - l ) Z & ( N Z / Q ) .  We can 
write the energy of the ideal vacancy system as 
E o ( N  - 1,1; ( N  - 1 ) Q / N )  = ( N  - 1 ) z & ( N Z / Q )  + ( N  - l ) e o ( N Z / Q )  

+ E t f d d ( N  - 1, 1: ( N  - 1)Q/N) + E a , ( N  - 1, 1; ( N  - l)Q/N) (27) 
where Ehad and E:el are the Madelung and electronic relaxation energies for the unre- 
laxed ionic positions. When we take the difference of energies in equation (25) ,  the 
contributions from the uniform electron gas cancel, and we get 
E! = E$ad(N - 1, 1; ( N  - l ) Q / N )  - [ ( N  - l)/N]E,ad(N, 0; Q) 

+ - 1,1; ( N  - 1)Q/N) - [ ( N  - 1) /N]Er2 , (N,  0 ;  5 2 ) .  (28) 
The Madelung energies are, of course, trivial to calculate. We can therefore focus on 
the electronic relaxation energies for the perfect and defective systems. A similar formula 
can be written for the ionically relaxed formation energy E,. 

It will be noted that the present calculations yield the formation energy at zero 
temperature (for zero pressure, this is equal to the enthalpy of formation). The quantity 
measured experimentally is the enthalpy of formation at a relatively high temperature. 
The two quantities are, of course, not identical, as has been stressed by, e.g., Catlow et 
a1 (1981). who discussed the thermodynamic relations needed in a calculation of high- 
temperature defect enthalpies. The work of Jacucci et a1 (1981) indicates that in alu- 
minium the enthalpy of formation increases by perhaps as much as 0.1 eV between 0 
and 860 K. This is not insignificant, but is not large enough to affect the arguments of 
the present paper. 

2.4. Perturbation theory 

A number of previous calculations on defects in simple metals have been based on 
perturbation theory, in which the energies are expanded up to some order (usually 
second) in the strength of the electron-core pseudopotential. The main calculations to 
be presented later do not, of course, rely on perturbation theory, but it will be extremely 
helpful to be able to compare them with perturbation results, as we shall see. It is 
relatively straightforward to perform perturbation calculations up to third order in the 
pseudopotential, and we summarise here the relations we shall need. 

We expand the electronic relaxation energy Ere, per repeating cell in powers of the 
periodic potential V(r)  of equation (3). The expansion is most conveniently written in 
terms of the Fourier components, which we define by 

V(G)  = (1/Q) dre-iG”V(r). 

To  third order in V ,  we write 

Ere1 = i~ 2’ ~2 (G) I V(G) I 
G 



696 M J Gillan 

where the prime on the summation indicates the exclusion of zero wavevectors. The 
quantityx2( G )  is the familiar linear response function describing the density disturbance 
caused by a weak external potential. Since our main calculations are based on the LDA, 
x 2  and x3  must also be treated in this way. The LDA for x2  is well known (Taylor 1978), 
and takes the form 

x2(G) = X!(G)/P - XW>(43-/G2 -4 , P ; C ) l  (31) 
where x ! (G)  is the response function for non-interacting electrons and ,U;, means dpu,,/ 
dp.  A general discussion of x3 has been given by Lloyd and Sholl (1968) and other 
authors (Hammerberg and Ashcroft 1974), though we have been unable to find an 
explicit LDA treatment. The LDA form for x 3  is, however, straightforward to derive, and 
we find 

x ~ ( G I ,  G2, G3) = 52(G1>52(G2>~2(G3)X~(G1, G2, ( 3 3 )  + t , u h ~ 2 ( G , ) ~ 2 ( G 2 ) ~ 2 ( G 3 )  
(32) 

(33)  

where is x3  for non-interacting electrons, E2(G) is defined as 

E2(G) = 1/[1 - X W ) ( 4 d G 2  + uL>1 
and pi! means d2pu,,/dp'. An expression for x ! (Gl  , G 2 ,  G,) in closed form is implicit in 
the paper of Lloyd and Sholl(l968). 

3. Techniques 

3.1. The total energy 

We need to calculate numerically the total free energy of equations (lo),  (11) and (12) 
for given amplitudes aqlG, occupation numbersf,, and ionic positions R, .  As usual, we 
impose a wavevector cut-off: the amplitude variables are the aqrC for the set of G such 
that t / G  + qI2 < Ecurfor some chosen energy E,,,. Our scheme for calculating the various 
terms in the energy follows quite closely that of Car and Parrinello (1985), and we now 
summarise this briefly. 

3.1.1. Kinetic energy. This can be evaluated directly as 

E K  = c wq cfql c IG + ql2laqIGl2. 
9 I C  

(34) 

3.1.2. Electron-core energy. This is conveniently evaluated in terms of the Fourier 
transform pc  of the density: 

E, = VG6-G 
G 

where (equation (3)) 

VG = Q OGS(G) 
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with S(G) the structure factor 

S(G) = e - ] G . R ,  
1 

and OG the Fourier transform of the pseudopotential 

4 r ) .  (39) cc = dre-iG.r ! 
The zero-wavevector term in equation (36) needs careful treatment, since f i G  diverges 
here; this has been discused by Ihm et a1 (1979). 

The direct evaluation of p G  in wavevector space 

would be extremely time-consuming, since the number of operations would be pro- 
portional to the square of the number of Gs. Instead, we calculate the density p/ = 
p(q)  on a grid of points r, in real space and construct p c  by Fourier transformation: 

p G  = w 1  2 e-G"pi  (41) 
/ 

where w1 is the volume per grid point. The p, are obtained from equation (13), after 
Fourier transformation of the amplitudes. The usual fast Fourier technique reduces 
the number of operations to v In v ,  where v is the number of Gs.  Note that equation 
(40) gives non-zero p c  for IGI up to approximately twice the cut-off lGJ used for the 
amplitudes. The real-space grid must be taken fine enough to account for this. If this 
is done, then the Fourier-transform method exactly reproduces equation (40). 

3.1.3. Hartree energy. This is likewise evaluated in terms of &: 

E H  = (21"d/Q) 2 G - 2 ~ p G ~ z  
G+O 

the zero-wavevector term being excluded (Ihm et a1 1979). 

3.1.4. Exchange-correlation energy. This is evaluated on the real-space grid: 

3.1.5. Madelung energy. The Coulomb interaction energy Ei of the ions is calculated 
using the standard Ewald technique. 

3.1.6. Ground-state energy. Our calculation will yield the minimum free energy A for 
a specified temperature T. The use of this finite-temperature scheme is merely a 
device, whose main purpose is to smooth discontinuities at the Fermi level (see 3 3.4 
below). Our real interest is in the ground-state energy Eo. It is easily shown that for 
small T the free energy deviates from Eo by a quantity quadratic in T: A = Eo - i yT2;  
and that the deviation of the energy E is equal and opposite: E = E ,  + i yT2 .  Our best 
estimate for the ground-state energy will therefore be ;(E + A) ,  whose deviation from 
Eo will only be O(T3).  Our numerical results for the energy presented in Q 4 are 
calculated in this way. 
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3.2. Energy minimisation 

Our task is to determine numerically the minimum (free) energy of the perfect and 
defective systems, and in the latter case to minimise this energy with respect to the 
ionic positions. One way of doing this involves the diagonalisation of the single-particle 
Hamiltonian using an estimate for the density p ( r ) ;  the resulting occupied orbitals are 
used to construct a new estimate for the density and the process is iterated to self- 
consistency. If the ionic positions are to be relaxed, this whole operation must be 
repeated in a search for the minimum total energy. It has been stressed by Car and 
Parrinello (1985) that this complicated nested set of processes can be condensed into 
a single iterative search in which the total energy E is minimised simultaneously with 
respect to the occupied wavefunctions and the ionic coordinates. In the scheme they 
propose, both the wavefunctions and the coordinates are treated as classical dynamical 
variables. The minimisation is performed by a type of damped dynamics. Their scheme 
has been used with great success in the study of grain-boundary and surface structure 
in germanium (Payne et a1 1987, Needels et a1 1987) and in the calculation of the 
relaxed bulk structure of a-cristobalite (Allan and Teter 1987). 

The approach we shall describe here is in the same general spirit as the Car- 
Parrinello method, but differs from it in important respects. The guiding idea is that 
we search for the overall minimum of the free energy as a function of the plane-wave 
amplitudes aqic of the occupied orbitals, the occupation numbers f,, and the ionic 
coordinates R,.  At this minimum, the single-particle equations (14) are satisfied and 
the forces on the ions all vanish. Instead of using damped dynamics, though, we 
perform the search by the conjugate-gradient technique, which we expect to be 
considerably more efficient. A number of important problems arise in the development 
of this approach for a metal, as we shall discuss later in this section. For the moment, 
we focus on minimisation with respect to the amplitudes; the occupation numbers and 
the ionic positions will be considered later. 

First, we recall the conjugate-gradient idea (Fletcher and Reeves 1964, Fletcher 
1980). Suppose we have a space of vectors x and a real function q ( x )  whose minimum 
we seek iteratively. At the kth step, we find ourselves at dk) and we look for the next 
estimate dk+')  along the search direction dk):  

(44) X ( k + l )  = + A ) ( k ) S ( k )  

where a(k) is chosen so as to minimise q along this direction. The conjugate-gradient 
prescription for dk) is a generalisation of the steepest-descent method. In the latter, 
dk)  would point down the gradient of q :  

(45) S ( k )  = f ( x ( k ) )  

f = - V q ~  (46) 

S ( k )  = f ( k )  + p ( k ) S ( k - 1 )  (47) 

p ( k )  = If ( k ) l 2 / 1 f ( k - 1 ) 1 2 .  (48) 

where the 'force'f is 

In the conjugate-gradient method, information about the forces in previous stcps is 
used to pick a more intelligent search direction. The algorithm is 

with /3 (k)  given by 

The process is initiated by taking do) =f('). The reasons for the efficacy of this strategy 
have been discussed by, for example, Fletcher (1980). 
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In our problem, the plane-wave amplitudes aqic for each occupied orbital (qi)  are 
the components of a vector in a (complex) vector space of dimension vql ,  the number 
of Gs. We are looking for the minimum energy as a function of the set of all occupied 
orbitals, so our vector space is the sum of the vector spaces for the orbitals; the overall 
dimension is thus Zvqi .  The force corresponding tof (equation (46)) has components 

F,,, = -8 E/d a & (49) 
where for the purpose of this derivative aqrC and aiiG are treated as independent 
variables. The calculation of the FqrC from the formulae of § 3.1 is straightforward. 

If we denote the amplitudes at the kth iteration by a ( k )  and the associated forces 
by FE;, then the iterative scheme is qlG 

where the search direction is 

with 

3.3. Orthonormality 

The scheme we have just outlined is of course incomplete in one essential respect: we 
have not accounted for the orthonormality of the single-particle orbitals. For each 
wavevector q ,  all the eigenfunctions vql(r) must be orthonormal: 

IQ d r  ~ i l ( r > ~ q , ( r )  = ( 5 3 )  

where the integral goes over a single supercell. With the amplitudes defined as in 
equation (22), this requires 

a i i G  = si] (54) 
G 

for every q. The search process should not therefore be free to range over the entire 
vector space, but should be constrained to the manifold of aqlG satisfying equation 
(54). The same condition applies in the Car-Parrinello method, and various ways have 
been used to enforce it (Car and Parrinello 1985, Payne et a1 1988). The procedure 
we have adopted consists of two steps. First, instead of taking the search direction 
given by equation (51), we take a modified search direction such that if the a$ satisfy 
the orthonormality condition then so do the to linear order in dk). Secondly, 
once cy@) has been chosen, we apply a correction to the ag;') so that they exactly 
satisfy the condition. 

Consider first the search direction. Suppose we have a set of amplitudes aqlG which 
are exactly orthonormal. Now consider vectors tqlG such that for AqlG defined by 

A;~,A,, = S, + o(&*). 
G 
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The set of all such tqiG forms a subspace which we call the tangent subspace (since the 
manifold of A q j G  is tangential to the constraint manifold). We now require that the 
search direction lie in the tangent subspace. The simplest way of ensuring this is to 
take the projection of S(? onto this subspace. It is readily shown that this projection 
Pi is 

qlG 

( k )  If we now use instead of SqiG in equation (50) ,  then we ensure that the a$:1) 
satisfy equation (54) to order (a@))'. But we want them to satisfy it exactly. In order 
to ensure this, we apply a correction 6a$G1): 

Of course, there is considerable freedom in the choice of the Sa$,t'). To fix them 
uniquely, we require that the correction be as small as possible in the sense that for 
each q, 

has the smallest possible value. This specifies the correction uniquely. It is straight- 
forward to show that if we write 

then 

where M, is a Hermitian matrix equal to Lg1I2, the elements of the matrix L, being 

3.4. Variable occupation numbers 

In the ground state, the occupation numbers f 9 1  are equal to 1 for < ,U and 0 for 
are the Kohn-Sham eigenvalues at wavevector q and ,U is the chemical 

potential (Fermi energy). In the case of a metal, this discontinuity of fql  as a function 
of energy is extremely troublesome, for reasons connected with the Brillouin zone 
sampling (Fu and Ho 1983, Needs et a1 1986). A particularly useful way of seeing this 
is in terms of perturbation theory (§ 2.4). If our calculation scheme is to be reliable, it 
must agree with low-order perturbation theory when the pseudopotential is sufficiently 
weak. Now if we were to expand the ground-state energy produced by our calculation 
scheme in powers of the pseudopotential, the associated response functions would 
implicitly be calculated by Brillouin zone sampling. But in perturbation theory we do 
not have to rely on Brillouin zone sampling, since we know the response functions 
analytically. The implication is that the sampling we adopt should yield response 
functions that agree closely with the analytical values. The sampling approximation 
to x!(G) is 

> p ,  where 
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where E !  are the non-interacting single-particle energies and f! are the associated 
occupation numbers. Now the point is that Brillouin zone sampling is effective with a 
small number of q-vectors only if the function being sampled is smooth in reciprocal 
space. But because of the occupation numbers, the function sampled in equation (62), 
far from being smooth, actually becomes discontinuous at zero temperature. 

There is another related reason why we get trouble. Since we cannot know the 
self-consistent eigenvalues in advance, we do not know how many occupied states 
there will be at each q. As the iteration progresses to self-consistency, eigenvalues at 
different q will generally cross each other and the Fermi energy, and this would require 
a discontinuous change of occupation numbers. Such discontinuities would presumably 
play havoc with the minimisation scheme. 

The solution we have adopted to these problems is to allow the f q i  to vary 
continuously in the range (0 ,  1). This has the effect both of smoothing the sampled 
function and of eliminating discontinuities due to level crossing. A convenient way of 
formulating this idea is to consider the calculation formally at finite temperature, and 
this is the reason for introducing the finite-temperature generalisation of density- 
functional theory outlined in § 2.1. 

It is straightforward to rewrite this finite-temperature scheme in terms of the 
plane-wave amplitudes and including Brillouin zone summation. In the practical 
minimisation, the amplitudes and the fqL are, of course, varied simultaneously. We 
have found it inconvenient and unnecesary to treat the fqr by conjugate gradients, and 
a much simpler method suffices. At  a given iteration k ,  we have values of the 
amplitudes a t &  and the occupation numbers fir() for the ith orbital at wavevector q. 
These are used to calculate the total energy, and also the single-particle expectation 
values qqi defined as in equation (16). These qql when substituted in equation (18) 
would give new occupation numbers, which we write as fi? + Afir(). The search for 
the next values of the occupation numbers is made according to 

(63) fir(+l) = f q i  ( k )  + ~ ( ~ ) A f $ f ) .  

It can be shown that this is guaranteed to reduce the free energy for some positive 

It will be seen that we have to pay a price for this finite-temperature device. We 
must now work with all orbitals for which f q l  is appreciable. However, since we require 
a good approximation to the zero-temperature situation, we must take kBT < p ,  so 
that the number of additional orbitals is not very grcat. It should be added that other 
methods for smoothing the Fermi discontinuity have also been described in the 
literature (Fu and Ho 1983, Needs et a1 1986). The relationship between our proposed 
method and these other methods requires further study. 

y ( k )  * 

3.5. Dificulties of ill-conditioning 

There are, however, other difficulties to be faced in the finite-temperature scheme, 
These arise because the equations to be solved are very ill-conditioned. There are two 
reasons for this. The first is that the free energy depends only weakly on the amplitudes 
aqiG of orbitals having small occupation numbers. The other has to do with the fact 
that the true minimum is obtained only for exact eigenfunctions of the single-particle 
Hamiltonian. If the temperature were exactly zero, the free energy would be invariant 
under a unitary transformation of the orbitals. At low temperature, it is almost 
invariant, so that the free energy is insensitive to such transformations. 
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The first problem is easy to deal with: we have only to work with suitably scaled 
amplitudes. We find that if we go to variables aqlG/vfql then this source of trouble 
disappears. 

The second problem is more vicious, and its solution requires a modification in 
strategy. Since unitary transformations play a central role here, it is natural to separate 
displacements of the amplitudes into two parts. Consider such a displacement: 

aqiG aqiG + 6aqiG 

for given q. This might represent a unitary transformation 

where U!, is unitary. The necessary and sufficient condition for this, given that 
orthonormality is preserved, is that the 8aqrG be linear combinations of the aqIG.  Then 
let us represent a general displacement as 

6aqiG = 611aq~G + 6 L a q ~ G  

c a,*,G&aq]G = 0 (67) 

(66) 
where 611aqlG is a linear combination of the aqlG and 6 1 ~ q r G  is orthogonal to all the aqlG: 

G 

for all i ,  j .  Our strategy will then be to apply conjugate gradients only to the orthogonal 
displacements SLaqlG,  and to use another procedure, now to be described, for the 
6l1aqlG; this will be devised so as to ensure that the single-particle Hamiltonian rapidly 
becomes diagonal in the space of the a,,,. 

In order to explain this, suppose that we have some amplitudes and occupation 
numbers, and hence some potential Veff(r), and let us define 

A,,, = i, di- V X r )  [-io2 + Veff(r>lWq,(r). (68) 

Perhaps the obvious way of forcing the orbitals to be eigenfunctions would simply be 
to diagonalise this matrix. But this would be unsatisfactory. It would not. of course, 
give us the self-consistent eigenfunctions, and there is no guarantee that it would even 
reduce the energy. What we prefer to do is to displace the wavefunctions so that they 
become more nearly eigenfunctions, while ensuring that the energy is reduced. Let us 
write the parallel displacements as 

In order for orthonormality to be preserved to linear order in a,  Wl, must be anti- 
Hermitian. We also want the Wll to be such that the energy decreases as a increases 
from zero. The condition can be shown to be 

h,I,W, (ff - f ,  1 < 0. (70) 
11 

Now let us write W ,  as 

W ,  = cl,hf#i/chqll - hq,,) = L , ~ q l / ( v q l  - r , )  (71) 
where c,, is symmetric-this will make Wll anti-Hermitian. The motivation for this is 
that if we take all c, = 1, then we just get the first-order perturbation formula for the 
eigenfunctions of hql,. Now consider condition (70). As we go to self-consistency, the 
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occupation numbers will go to their thermal values, equation (18), so that f ,  > f l  if 
qr < q,. In this case, equation (70) is automatically satisfied for c,, = 1. On the way to 
self-consistency, it may happen for some (i, j )  that f i  - f ,  and ql - q, have the same 
sign; if this happens, we put c,, = 0 for such ( i ,  j ) ,  to ensure that condition (70) remains 
satisfied. We also modify c,, if ~hql,I/(qql - 7,) is too large, since perturbation theory 
is valid only for small values of this ratio. We choose some maximum value (normally 
equal to 0.2) for IW,l and reduce cl, from unity, if necessary, so that this maximum is 
not exceeded. 

3.6. Relaxation of the ions 

The relaxation of the ions to their equilibrium positions is actually one of the lesser 
problems in the present work, which is why we have left it till last. Car and Parrinello 
(1985) proposed a ‘simulated annealing’ procedure for simultaneously relaxing the 
ions and the electrons, and stressed the virtues of this approach when there are many 
competing minima. In the present problem (and many others), we should not expect 
to find more than a single minimum, so that a much simpler method suffices. Initially, 
we attempted to treat the ions and the wavefunctions on the same footing in a 
combined conjugate-gradient scheme. This can be made to work, but turns out to be 
very slow. The method we have adopted makes use of the fact that it is very much 
easier to relax the ions to their zero-force positions than to relax the electrons to self- 
consistency. 

In the expression for the total energy, the ionic coordinates appear explicitly only 
in E, and E,. For a given p ( r ) ,  the calculation of the forces on the ions is orders of 
magnitude more rapid than the electronic part of the calculation. For fixed aqlc and 
f,,, the relaxation of the ions to the positions for which the ‘forces’ -dE/dR, vanish to 
high accuracy can be accomplished in a very few (usually three or four) iterative steps. 
Our procedure thus involves the relaxation of the ions to their exact zero-force 
positions at each iterative step for the amplitudes and occupation numbers. The 
iterative relaxation of the latter variables is performed exactly as described before, 
the electronic forces FqlC being evaluated for the exact zero-force positions of the ions. 

It will be noted that this method is exactly the opposite of the more obvious method 
in which the electrons are relaxed to self-consistency before the ionic forces are 
calculated. This latter method would, of course, take far longer, because it is the 
iteration to self-consistency which is the time-consuming process. It should also be 
stressed that the ionic forces -dE/dR,  are not the Hellmann-Feynman forces that 
would be found for the ground state with the given R , .  This does not matter, though: 
all that is required is that our overall procedure should yield the minimum of the free 
energy with respect to the amplitudes, occupation numbers and positions. 

3.7. Pseudopotential and exchange-correlation function 

The pseudopotential for aluminium used in our numerical calculations is a local form 
due to Goodwin (1987). Its Fourier transform (equation (39)) is 
O k  = -(4n/k2)[(Z - A R )  cos(kR) + ( A / k )  sin(kR)] exp[ -(k/kJN] (72) 
the values of the parameters being 2 = 3, A = 0,11065, R = 1.15, k,  = 3.5, N =  6 in 
atomic units (energies in hartrees). This pseudopotential is constructed so as to 
reproduce the experimental value for the equilibrium lattice parameter, and it has 
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been shown to give satisfactory values for the bulk modulus and the phonon frequencies 
(Goodwin 1987). 

Our calculations use the exchange-correlation energy E&) due to Ceperley and 
Alder (19801, as parametrised by Perdew and Zunger (1981). 

3.8. Brillouin zone sampling 

The Brillouin zone sampling is performed using the special-points scheme of Chadi 
and Cohen (1973). With our finite-temperature device, it is sufficiently accurate to use 
two special points in the irreducible 1/48th of the Brillouin zone, as we shall show. 

4. Numerical results 

Our concern here is not only with the absolute numerical results but also with showing 
that the various technical problems are under adequate control. Apart from the 
convergence to self-consistency, which poses no particular problem, there are four 
technical matters that demand attention: (i) the energy cut-off; (ii) the number of 
sampling vectors; (iii) the ‘temperature’; and (iv) the size of the supercell. All four 
can be studied by suitable comparisons with perturbation results. There are three 
convenient sizes of supercell, which contain 8, 16 and 27 lattice sites, and correspond 
respectively to FCC, BCC and FCC periodic geometry. We have made calculations on 
the perfect lattice, the ideal vacancy and the relaxed vacancy, and we discuss the 
results for these systems in turn. In all the results to be reported, electronic self- 
consistency has been achieved to better than Hartree for the total energy of the 
system. 

4.1. The perfect lattice 

Extensive trial calculations have led us to conclude that an energy cut-off of 6.4 
Hartree, a temperature of one-tenth the free-electron Fermi energy, and two Chadi- 
Cohen sampling points give adequate precision, and all results are obtained with these 
parameters, unless otherwise stated. The quoted energy cut-off is the one we use for 
the equilibrium value of the lattice parameter ao; for other values of ao, the cut-off is 
scaled so that the number of plane waves for a given supercell is always the same. 

Calculations on the 16-site perfect lattice for a series of lattice parameters yield an 
equilibrium a. of 7.598 au. This is very close to the value expected for the pseu- 
dopotential we are using (Goodwin 1987); the experimental value is a. = 7.64 au 
(Simmons and Wang 1971). 

We now compare with perturbation theory by making calculations in which the 
pseudopotential is scaled by a factor C between 0 and 1. If second-order perturbation 
theory was exact, the electronic relaxation energy Ere, would be proportional to C2, 
so it is convenient to study the quantity Ere,/NslteC2, where N,,,, is the number of sites 
in the supercell. Results for the three supercells are displayed in figure 1. By fitting to 
a fifth-degree polynomial, we extract the two leading coefficients in the expansion 

Erel/NslteC2 = bo + b l C  + . . . (73) 
corresponding to second- and third-order perturbation theory. The exact values of 
these coefficients can be calculated from equation (30)-here the wavevector sums 
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Figure 1. Electronic relaxation energy E,,, for the perfect lattice for different values of the 
scaling factor C of the ionic pseudopotential. Dots show values obtained from the full 
calculation; results for the three sizes of supercell are indistinguishable on the scale of the 
plot. The straight line shows the result of perturbation theory up to third order. 

Table 1. Expansion coefficients bo and b l  for the electronic relaxation energy of the perfect 
lattice: comparison of values extracted from the full calculation and exact values from 
perturbation theory. Values are in hartrees 

bo bl 

Site no. Full calc. Pert. Full calc. Pert. 

8 -0.09834 -0.09887 0.04385 0.04464 
16 -0.09824 -0.09887 0.04395 0.04464 
27 -0.09812 -0.09887 0.04371 0.04464 

are cut off at a value corresponding to an energy of 8.5 Hartree, which is enough to 
render the residual error completely negligible. Values of the expansion coefficients 
are compared in table 1. The very close agreement confirms the adequacy of our 
chosen parameters. Note that the small differences between the results for different 
supercells are solely due to the Brillouin zone sampling and give a measure of the 
error due to sampling. 

4.2. The ideal vacancy 

We have done calculations on the vacancy system with supercells containing 8, 16 and 
27 sites ( 7 ,  15 and 26 atoms). The lattice parameter a. is taken in each case so that 
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Figure 2. Electronic relaxation contribution AE$ to the ideal vacancy formation energy 
for different values of the scaling factor C of the ionic pseudopotential. The three sets of 
results are for supercells containing 8, 16 and 27 lattice sites. 

the number of atoms per unit volume is the same as in the perfect crystal (§ 2.3),  and 
the energy cut-off is adjusted accordingly. 

We first study the agreement with perturbation theory, by performing the cal- 
culations with different scale factors C for the pseudopotential. As we have shown in 
§ 2.3, the key quantity for the vacancy formation energy is the difference of electronic 
relaxation energy for the defective and perfect systems, which is given for the ideal 
vacancy by 

AE:e, = EFe,(N - 1, 1; ( N  - l)Q/N) - [ ( N  - l) /N]E,, ,(N, 0 ;  Q). (74) 

In figure 2 we display our results for A J ~ ; ~ , / C ~  for the three sizes of supercell. By 
fitting as before to a fifth-degree polynomial, we extract the two leading coefficients 
in the expansion 

AE:e1/C2 = Bo + B I C  + . . . (75) 
corresponding to second- and third-order perturbation theory. The exact values of 
these coefficients are then calculated by applying equation (30) to the defective system 
with the same values of lattice parameter as in the full calculation and a cut-off energy 
of 8.5 Hartree. The values of the coefficients are compared in table 2. The close 
agreement with the exact results confirms the adequacy of the energy cut-off, the 
temperature and the number of sampling vectors used in the full calculations. 

We now use the results to calculate the energy of formation of the ideal vacancy. 
The most obvious way to do this is simply to use equation (28) as it stands. The ionic 
Madelung energies and hence the difference 

hEb,d =ELad(N-  1, 1; ( N -  l )Q/N) - [ ( N -  l ) / N ] E ~ ? , d ( N , o ; n )  (76) 
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Table 2. Expansion coefficients Bo and B ,  for the electronic relaxation energy of vacancy 
formation: comparison of values extracted from the full calculation and exact values from 
perturbation theory. Values in hartrees. 

Bo B1 

Site no. Full calc. Pert. Full calc. Pert. 

8 -0.5478 -0.5454 0.0090 0.0071 
16 -0.7873 -0.7896 0.0166 0.0198 
27 -0.5446 -0.9433 0.0220 0.0231 

Table 3. Electronic relaxation and Madelung terms, AE$ and AELdd, in the formation 
energy E:' of the ideal vacancy calculated for three sizes of repeating cell. Energies in 
hartrees (eV in parentheses). 

8 -0.5268 0.5527 0.0255 (0.71) 
16 -0.7616 0.7852 0.0236 (0.64) 
27 -0.9154 0.9366 0.0212 (0.58) 

Table 4. The part of the electronic relaxation energy for vacancy formation 6AEYel not 
accounted for by second- and third-order perturbation theory, and the resulting improved 
estimate for the vacancy formation energy. Energies in hartrees (eV in parentheses). 

Site no. 6AEfcl E)' 

8 0.0120 0.0224 (0.61) 
16 0.0091 0.0246 (0.67) 
27 0.0072 0.0236 (0.64) 

are straightforward to calculate to high precision using the usual Ewald procedure. 
Our results for AE,0],  AELad and E! for the three supercells are listed in table 3. 

The precision of these results can be improved by a very simple device. We have 
shown that the expansion coefficients Bo and B1 are in close agreement with their 
exact values. Nevertheless, there are errors, which are not negligible on the scale of 
the formation energy. We can use our knowledge of the exact values to eliminate this 
part of the error. Let us denote by GAE:el the part of AE:el not accounted for by 
second- and third-order perturbation theory: 

I ~ A E ; ~ ,  = AE:e, - B o  - B, .  (77) 
Taking AE!el ,  Bo and B 1  all from our full calculations, we obtain the values of 
c ~ A E : ~ ,  given in table 4. Since we know that these calculations give Bo and B1 correct 
to about Hartree, we expect that the value of SAE:eI will also be correct to this 
kind of accuracy. We now calculate AE:el by writing 

where Bract and B y t  are the exact values calculated from the perturbation 
(78) 

A E ; ~ ,  = B r a c t  + B e x a c t  
1 + 6 A E L  
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Table S. Expansion coefficients B y '  and Be""' , and Madelung term AERfdd for the vacancy 
formation energy (E?)pe" calculated by third-order perturbation theory for a range of cell 
sizes; supercell syrnmetry is noted in parentheses in the first column. 

Site no 

8 (FCC) 
16 (BCC) 
27 (FCC) 
64 (FCC) 

125 (FCC) 
128 (BCC) 
216 (FCC) 

-0.5494 0.0071 
-0.7896 0.0198 
-0.9433 0.0231 
--1.1518 0.0238 
-1.2805 0.0250 
- 1.2846 0.0244 
--1.3678 0.0253 

AE:;,,, 
___I.__ 

0.5527 
0.7852 
0.9366 
1,1434 
1.2716 
1.2756 
1.3.585 

( E ,  )P"' 

0 0104 
0 0155 
0 0164 
0 0154 
0 0161 
0 0155 
0 0160 

expression. This procedure should give a result for AE:e, and hence E: to a precision 
of better than lop3 Hartree (0.03 eV). Results for E! obtained by this procedure are 
given in table 4. It must be stressed that this precision concerns only the effects of energy 
cut-off, temperature and Brillouin zone sampling. Since both the full calculations and 
the perturbation calculations are performed in supercell geometry, there will remain 
errors due to the interaction between the vacancies. However, the perturbation scheme 
also allows us to assess this source of error, as we now show. 

4.3. Supercell effects 

The full calculations become very time-consuming for supercells containing more than 
27 sites. But it is clear from the results we have just presented that the major part of the 
electronic relaxation energy is accounted for by second- and third-order perturbation 
theory. The remainder 6AE:e, is still important on the scale of the vacancy energy, 
but is considerably smaller than the other terms. In particular, its variation with 
supercell size should be smaller than that of those other terms. This means that we 
can use perturbation theory to gauge the supercell corrections. The perturbation 
calculations are, of course, far more rapid than the full calculations, so that we can 
go to much bigger supercells. We give in table 5 the values of B Y  and BYact, together 
with the perturbation value of the formation energy (EY)Pert = 
AELad + B Y '  + Bexact for a wide range of supercell sizes. This shows that the variation 
due to supercell effects as we go beyond a supercell of 27 sites is no more than lW3 
Hartree. The indication is that the value for E: for the 27-site supercell in table 4 
represents the energy of formation of an isolated ideal vacancy to a precision of about 

Hartree. 

4.4. The ionic relaxation energy 

We have used the procedure described in 8 3.6 to relax the electrons and the ionic 
positions simultaneously. For the eight-site system, the translational symmetry pre- 
vents relaxation, so the calculations have been done only for the 16- and 27-site 
systems. The difference between the fully relaxed energy of the vacancy system and 
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Table 6 .  Ionic relaxation energy AEf and final results for the relaxed vacancy formation 
energy Ef. Energies in hartrees (eV in parentheses). 

Site no. A Ef Er 

16 - 0.0036 0.0210 (0.57) 
27 -0.0031 0.0205 (0.56) 

its ground-state energy when the ions are fixed on their regular lattice sites gives the 
ionic relaxation energy A E f .  Results for this energy, together with the relaxed for- 
mation energy Ef = E ;  + AEf  are given in table 6. For a large system, we might expect 
the periodicity to reduce the magnitude of AE,, since it has the effect of a constraint. 
It is perhaps a little surprising, then, that the relaxation energy is slightly smaller for 
the larger system; presumably this is a consequence of interactions between the defects. 
However, the difference of ionic relaxation energy between the two sizes of system is 
small, and it seems unlikely that this energy would be significantly different for larger 
repeating cells. Our result of 0.56 eV is quite close to the experimental value of 0.66 eV 
(Triftshauser 1975, Berger et a1 1978, Fluss et a1 1978). 

5. Discussion 

The results we have presented indicate that it is now possible to calculate defect 
energies in the simple metals with adequate precision. Several possible reasons can 
be suggested for our remaining small discrepancy with experiment for the vacancy 
energy in aluminium: (i) our calculations refer to zero temperature, but the experiments 
are performed at high temperature; (ii) the pseudopotential we have used is not good 
enough; and (iii) the LDA is not good enough. In fact, there is some indication from 
the work of Jacucci et a1 (1981) that there is a significant temperature dependence of 
the enthalpy of formation in aluminium. According to their results, an increase of 
-0.1 eV might be expected on going from zero temperature to 860 K.  This would be 
enough to account for our discrepancy. But it also seems likely that, to the accuracy 
we are now discussing, a local representation of the pseudopotential would not be 
reliable. We have based our calculations on a local pseudopotential because the local 
approximation appears to be reasonably good for aluminium, but we would not expect 
it to give completely quantitative results. The extension of our scheme to treat non- 
local pseudopotentials will therefore be essential. A number of proposals for including 
non-locality in Car-Parrinello-like schemes have been made (Car and Parrinello 1987, 
Car et a1 1987, Allan and Teter 1987), and the required extension seems unlikely to 
pose serious problems, at least for the simple metals. We are currently studying this 
question. Once this has been done, we hope the way will be open to the ab initio study 
of a wide range of defect properties (formation, migration and binding energies of 
vacancies, interstitials, impurities, etc) in the simple metals. We expect that such 
calculations will significantly improve our understanding of, for example, mass trans- 
port in these metals. 

One of the themes of this work has been the relation between the full ab initio 
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calculation and low-order perturbation theory. The jellium calculations of Evans and 
Finnis (1976) suggested that non-linear terms in the electronic relaxation energy would 
give a coniribution of -1 eV. Our results fully confirm this: for the ideal vacancy 
(9 4.2), the difference between our calculated formation energy and the second-order 
perturbation value is 0.8 eV. A large part of this (0.6 eV) is accounted for by the 
third-order term. This encourages the thought that perhaps a simple but accurate 
representation of the total energy as a function of ionic configuration may be found 
for metals like aluminium. 

Perturbation theory also plays a central part in the present work in providing a 
powerful check on the technical approximations used in the full calculations. This is 
a very important matter, given the high precision that must be achieved to obtain 
useful results for the vacancy energy. By combining our full calculations with per- 
turbation theory in the appropriate way, we have been able to reduce the purely 
technical errors to -0.03 eV, which is more than adequate for most practical purposes. 
One very important aspect of this concerns the effect of interactions between the 
defects in supercell geometry. It was suggested by Chakraborty et a1 (1981) and by 
Chakraborty and Siege1 (1982) that such effects might be responsible for the large 
(-1 eV) difference between their calculated vacancy energy in aluminium and the 
experimental value. As we have seen, if we work with a 27-site supercell, the correction 
due to such effects is unlikely to be more than -0.03 eV. 

Lastly, we comment on the energy minimisation method itself. In developing this 
method, we were guided by the desire to minimise simultaneously with respect to the 
wavefunctions and the ionic positions, following Car and Parrinello. This approach 
encounters difficulties in a metal, because of Fermi-surface effects. Our proposed 
solution to this problem, which involves treating the system at finite temperature, is 
related to other methods that are in use for smoothing the discontinuity in occupation 
number at the Fermi energy (Fu and Ho 1983, Needs et a1 1986). Although this device 
turns out to be efficient and accurate, it does make the method rather complicated, 
and it seems likely that our method could be simplified and improved. As an indication 
of the magnitude of the computing task, we note that a full relaxation calculation on 
the 27-site system presently requires about 2 h of CPU time on the Cray 2; calculations 
on the smaller cells are, of course, more rapid. We believe that there is considerable 
scope for improving the efficiency of the calculations, and that one can expect to 
reduce the computation time by a factor of 2 or more. This will be a task for the 
future. 
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